Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Soot and Ash Deposition Characteristics at the Catalyst-Substrate Interface and Intra-Layer Interactions in Aged Diesel Particulate Filters Illustrated using Focused Ion Beam (FIB) Milling

2012-04-16
2012-01-0836
The accumulation of soot and lubrication-derived ash particles in a diesel particulate filter (DPF) increases exhaust flow restriction and negatively impacts engine efficiency. Previous studies have described the macroscopic phenomenon and general effects of soot and ash accumulation on filter pressure drop. In order to enhance the fundamental understanding, this study utilized a novel apparatus that of a dual beam scanning electron microscope (SEM) and focused ion beam (FIB), to investigate microscopic details of soot and ash accumulation in the DPF. Specifically, FIB provides a minimally invasive technique to analyze the interactions between the soot, ash, catalyst/washcoat, and DPF substrate with a high degree of measurement resolution. The FIB utilizes a gallium liquid metal ion source which produces Ga+ ions of sufficient momentum to directionally mill away material from the soot, ash, and substrate layers on a nm-μm scale.
Journal Article

Sensitivity Analysis of Ash Packing and Distribution in Diesel Particulate Filters to Transient Changes in Exhaust Conditions

2012-04-16
2012-01-1093
Current CJ-4 lubricant specifications place chemical limits on diesel engine oil formulations to minimize the accumulation of lubricant-derived ash in diesel particulate filters (DPF). While lubricant additive chemistry plays a strong role in determining the amount and type of ash accumulated in the DPF, a number of additional factors play important roles as well. Relative to soot particles, whose residence time in the DPF is short-lived, ash particles remain in the filter for a significant fraction of the filter's useful life. While it is well-known that the properties (packing density, porosity, permeability) of soot deposits are primarily controlled by the local exhaust conditions at the time of particle deposition in the DPF, the cumulative operating history of the filter plays a much stronger role in controlling the properties and distribution of the accumulated ash.
Journal Article

Ash Permeability Determination in the Diesel Particulate Filter from Ultra-High Resolution 3D X-Ray Imaging and Image-Based Direct Numerical Simulations

2017-03-28
2017-01-0927
Diesel engine exhaust aftertreatment components, especially the diesel particulate filter (DPF), are subject to various modes of degradation over their lifetimes. One particular adverse effect on the DPF is the significant rise in pressure drop due to the accumulation of engine lubricant-derived ash which coats the inlet channel walls effectively decreasing the permeability of the filter. The decreased permeability due to ash in the DPF can result in increased filter pressure drop and decreased fuel economy. A unique two-step approach, consisting of experimental measurements and direct numerical simulations using ultra-high resolution 3D imaging data, has been utilized in this study to better understand the effects of ash accumulation on engine aftertreatment component functionality.
Journal Article

In-Situ Optical Analysis of Ash Formation and Transport in Diesel Particulate Filters During Active and Passive DPF Regeneration Processes

2013-04-08
2013-01-0519
The formation and transport processes governing the build-up of incombustible ash deposits in diesel particulate filters (DPF) are influenced to a large extent by the filter's operating history. More specifically, the regeneration process, whether active, passive, or some variation of the two, has long been assumed to exert significant influence on the resulting ash characteristics. Until recently, only limited circumstantial evidence was available to describe differences in ash properties and distribution impacting DPF performance for filters subjected to different regeneration strategies. This work presents, for the first time, results from a comprehensive series of evaluations with optically-accessible DPF core samples showing the processes controlling the formation, transport, and interaction of the soot and ash deposits over a range of DPF regeneration conditions.
Journal Article

Ash Accumulation and Impact on Sintered Metal Fiber Diesel Particulate Filters

2015-04-14
2015-01-1012
While metal fiber filters have successfully shown a high degree of particle retention functionality for various sizes of diesel engines with a low pressure drop and a relatively high filtration efficiency, little is known about the effects of lubricant-derived ash on the fiber filter systems. Sintered metal fiber filters (SMF-DPF), when used downstream from a diesel engine, effectively trap and oxidize diesel particulate matter via an electrically heated regeneration process where a specific voltage and current are applied to the sintered alloy fibers. In this manner the filter media essentially acts as a resistive heater to generate temperatures high enough to oxidize the carbonaceous particulate matter, which is typically in excess of 600°C.
Journal Article

Theoretical and Experimental Analysis of Ash Accumulation and Mobility in Ceramic Exhaust Particulate Filters and Potential for Improved Ash Management

2014-04-01
2014-01-1517
Ash accumulation in the channels of ceramic, honeycomb-type particulate filters is controlled by several key parameters, which are the focus of this study. Ultimately, it is the formation of ash deposits, their transport, and the manner in which the ash accumulates in the particulate filter, which determines the useful service life of the filter and its resulting impact on engine performance. Although significant variations in ash deposit properties and their spatial distribution within the filter channels have been reported, depending on the filter's application, understanding the key parameters and mechanisms, such as the effects of exhaust flow and temperature conditions, as well as the processes occurring during filter regeneration events (whether passive or active) are critical in developing improved filter ash management strategies.
Journal Article

Direct Measurements of Soot/Ash Affinity in the Diesel Particulate Filter by Atomic Force Microscopy and Implications for Ash Accumulation and DPF Degradation

2014-04-01
2014-01-1486
Inorganic engine lubricant additives, which have various specific, necessary functions such as anti-wear, leave the combustion chamber bound to soot particles (approximately ≤1% by mass) as ash [13], and accumulate in aftertreatment components. The diesel particulate filter (DPF) is especially susceptible to ash-related issues due to its wall-flow architecture which physically traps most of the soot and ash emissions. Accumulated lubricant-derived ash results in numerous problems including increased filter pressure drop and decreased catalytic functionality. While much progress has been made to understand the macroscopic details and effects of ash accumulation on DPF performance, this study explores the nano- and micron-scale forces which impact particle adhesion and mobility within the particulate filter.
Journal Article

Design Drivers of Energy-Efficient Transport Aircraft

2011-10-18
2011-01-2495
The fuel energy consumption of subsonic air transportation is examined. The focus is on identification and quantification of fundamental engineering design tradeoffs which drive the design of subsonic tube and wing transport aircraft. The sensitivities of energy efficiency to recent and forecast technology developments are also examined.
Technical Paper

Engine-Out “Dry” Particular Matter Emissions from SI Engines

1997-10-01
972890
The Engine-Out Particulate Matter (EOPM) was collected from a spark ignition engine operating in steady state using a heated quartz fiber filter. The samples were weighted to obtain an EOPMindex and were analyzed using Scanning Electron Microscopy. The EOP Mindex was not sensitive to the engine rpm and load. When the mixture is very rich (air equivalence ratio λ less than ∼ 0.7), the EOPM comprise mostly of soot particles from fuel combustion. In the lean to slightly rich region (0.8 < λ < 1.2), however, the EOPM are dominated by particles derived from the lubrication oil.
Technical Paper

The Effect of Operating Conditions at Idle in the S.I. Engine

1997-10-01
972990
A gasoline engine with an electronically controlled fuel injection system has substantially better fuel economy and lower emissions than a carburetted engine. In general, the stability of engine operation is improved with fuel injector, but the stability of engine operation at idle is not improved compared with a carburetted gasoline engine. In addition, the increase in time that an engine is at idle due to traffic congestion has an effect on the engine stability and vehicle reliability. Therefore, in this research, we will study the influence of fuel injection timing, spark timing, dwell angle, and air-fuel ratio on engine stability at idle.
Technical Paper

Application of Model Fuels to Engine Simulation

2007-07-23
2007-01-1843
To address the growing need for detailed chemistry in engine simulations, new software tools and validated data sets are being developed under an industry-funded consortium involving members from the automotive and fuels industry. The results described here include systematic comparison and validation of detailed chemistry models using a wide range of fundamental experimental data, and the development of software tools that support the use of detailed mechanisms in engineering simulations. Such tools include the automated reduction of reaction mechanisms for targeted simulation conditions. Selected results are presented and discussed.
Technical Paper

Effects of Variations in Market Gasoline Properties on HCCI Load Limits

2007-07-23
2007-01-1859
The impact of market-fuel variations on the HCCI operating range was measured in a 2.3L four-cylinder engine, modified for single-cylinder operation. HCCI combustion was achieved through the use of residual trapping. Variable cam phasing was used to maximize the load range at each speed. Test fuels were blended to cover the range of variation in select commercial fuel properties. Within experimental measurement error, there was no change in the low-load limit among the test fuels. At the high-load limit, some small fuel effects on the operating range were observed; however, the observed trends were not consistent across all the speeds studied.
Technical Paper

The Effects of Sulfated Ash, Phosphorus and Sulfur on Diesel Aftertreatment Systems - A Review

2007-07-23
2007-01-1922
This paper reviews the relevant literature on the effects of sulfated ash, phosphorus, and sulfur on DPF, LNT, and SCR catalysts. Exhaust backpressure increase due to DPF ash accumulation, as well as the rate at which ash is consumed from the sump, were the most studied lubricant-derived DPF effects. Based on several studies, a doubling of backpressure can be estimated to occur within 270,000 to 490,000 km when using a 1.0% sulfated ash oil. Postmortem DPF analysis and exhaust gas measurements revealed that approximately 35% to 65% less ash was lost from the sump than was expected based on bulk oil consumption estimates. Despite significant effects from lubricant sulfur and phosphorus, loss of LNT NOX reduction efficiency is dominated by fuel sulfur effects. Phosphorus has been determined to have a mild poisoning effect on SCR catalysts. The extent of the effect that lubricant phosphorus and sulfur have on DOCs remains unclear, however, it appears to be minor.
Technical Paper

Phenomena that Determine Knock Onset in Spark-Ignition Engines

2007-01-23
2007-01-0007
Experiments were carried out to collect in-cylinder pressure data and microphone signals from a single-cylinder test engine using spark timingsbefore, at, and after knock onset for toluene reference fuels. The objective was to gain insight into the phenomena that determine knock onset, detected by an external microphone. In particular, the study examines how the end-gas autoignition process changes as the engine's spark timing is advanced through the borderline knock limit into the engine's knocking regime. Fast Fourier transforms (FFT) and bandpass filtering techniques were used to process the recorded cylinder pressure data to determine knock intensities for each cycle. Two characteristic pressure oscillation frequencies were detected: a peak just above 6 kHz and a range of peaks in the 15-22 kHz range. The microphone data shows that the audible knock signal has the same 6 kHz peak.
Technical Paper

Modeling and Measurement of Tribological Parameters between Piston Rings and Liner in Turbocharged Diesel Engine

2007-04-16
2007-01-1440
This paper presents tribological modeling, experimental work, and validation of tribology parameters of a single cylinder turbocharged diesel engine run at various loads, speeds, intake boost pressures, and cylinder liner temperatures. Analysis were made on piston rings and liner materials, rings mechanical and thermal loads, contact pressure between rings and liner, and lubricant conditions. The engine tribology parameters were measured, and used to validate the engine tribology models. These tribology parameters are: oil film thickness, coefficient of friction between rings and liner, friction force, friction power, friction torque, shear rate, shear stress and wear of the sliding surfaces. In order to measure the oil film thickness between rings and liner, a single cylinder AVL turbocharged diesel engine was instrumented to accept the difference in voltage drop method between rings, oil film, and liner.
Technical Paper

Engine Wear Modeling with Sensitivity to Lubricant Chemistry: A Theoretical Framework

2007-04-16
2007-01-1566
The life of an automotive engine is often limited by the ability of its components to resist wear. Zinc dialkyldithiophosphate (ZDDP) is an engine oil additive that reduces wear in an engine by forming solid antiwear films at points of moving contact. The effects of this additive are fairly well understood, but there is little theory behind the kinetics of antiwear film formation and removal. This lack of dynamic modeling makes it difficult to predict the effects of wear at the design stage for an engine component or a lubricant formulation. The purpose of this discussion is to develop a framework for modeling the formation and evolution of ZDDP antiwear films based on the relevant chemical pathways and physical mechanisms at work.
Technical Paper

Comparative Analysis of Automotive Powertrain Choices for the Next 25 Years

2007-04-16
2007-01-1605
This paper assesses the potential improvement of automotive powertrain technologies 25 years into the future. The powertrain types assessed include naturally-aspirated gasoline engines, turbocharged gasoline engines, diesel engines, gasoline-electric hybrids, and various advanced transmissions. Advancements in aerodynamics, vehicle weight reduction and tire rolling friction are also taken into account. The objective of the comparison is the potential of anticipated improvements in these powertrain technologies for reducing petroleum consumption and greenhouse gas emissions at the same level of performance as current vehicles in the U.S.A. The fuel consumption and performance of future vehicles was estimated using a combination of scaling laws and detailed vehicle simulations. The results indicate that there is significant potential for reduction of fuel consumption for all the powertrains examined.
Technical Paper

Making the Case for a Next Generation Automotive Electrical System

1998-10-19
98C006
Introduction of an array of new electrical and electronic features into future vehicles is generating vehicle electrical power requirements that exceed the capabilities of today's 14 volt electrical systems. In the near term (5 to 10 years), the existing 14V system will be marginally capable of supporting the expected additional loads with escalating costs for the associated charging system. However, significant increases in vehicle functional content are expected as future requirements to meet longer-term (beyond 10 years) needs in the areas of emission control, fuel economy, safety, and passenger comfort. A higher voltage electrical system will be required to meet these future requirements. This paper explores the functional needs that will mandate a higher voltage system and the benefits derivable from its implementation.
Technical Paper

Modeling Costs and Fuel Economy Benefits of Lightweighting Vehicle Closure Panels

2008-04-14
2008-01-0370
This paper illustrates a methodology in which complete material-manufacturing process cases for closure panels, reinforcements, and assembly are modeled and compared in order to identify the preferred option for a lightweight closure design. First, process-based cost models are used to predict the cost of lightweighting the closure set of a sample midsized sports utility vehicle (SUV) via material and process substitution. Weight savings are then analyzed using a powertrain simulation to understand the impact of lightweighting on fuel economy. The results are evaluated in the context of production volume and total mass change.
Technical Paper

Liquid Fuel Visualization Using Laser-Induced Fluoresence During Cold Start

1998-10-19
982466
The presence of liquid fuel inside the engine cylinder is believed to be a strong contributor to the high levels of hydrocarbon emissions from spark ignition (SI) engines during the warm-up period. Quantifying and determining the fate of the liquid fuel that enters the cylinder is the first step in understanding the process of emissions formation. This work uses planar laser induced fluorescence (PLIF) to visualize the liquid fuel present in the cylinder. The fluorescing compounds in indolene, and mixtures of iso-octane with dopants of different boiling points (acetone and 3-pentanone) were used to trace the behavior of different volatility components. Images were taken of three different planes through the engine intersecting the intake valve region. A closed valve fuel injection strategy was used, as this is the strategy most commonly used in practice. Background subtraction and masking were both performed to reduce the effect of any spurious fluorescence.
X